A sequence of standardized triangles: Fractal Geometry in the education of Early Years teachers
DOI:
https://doi.org/10.37001/ripem.v13i1.3051Keywords:
Sierpinski Triangle, Early Years, Remote Teaching, Fractal Geometry, Solving ProblemsAbstract
This article presents a qualitative research that was applied to six students from a continuing education course in a professional master's degree in Science and Mathematics Teaching aimed at pedagogues, in a class held remotely. The study aimed to investigate how to explore with existing material resources in the home environment to build the Sierpinski Triangle, in order to obtain sequences and patterns from elements of that geometric figure. Due to the participants working in the Early Years of Elementary School, they needed to analyze objectives and skills contained in the Base Nacional Comum Curricular, as well as indicate possibilities of the proposed activity in class to be replicated with their students. The results showed that the individuals performed the constructions and recognized elements of the triangles, in addition to performing calculations of perimeters and areas and recognizing patterns in the obtained sequences.
Downloads
References
Brasil. Ministério da Educação. Secretaria de Educação Básica. (2017). Base Nacional Comum Curricular. BrasÃlia, DF: Diário Oficial da União.
Giaquinto, M. (2007). Visual Thinking in Mathematics: An Epistemological Study. New York: Oxford University Press Inc.
Janos, M. (2009). Matemática e Natureza. São Paulo, SP: Livraria Editora da FÃsica.
Jiang, B. & MA, D. (2018). How Complex Is a Fractal? Head/tail Breaks and Fractional Hierarchy. Journal of Geovisualization and Spatial Analysis, 6, 2-6.
Leivas, J. C. P. (2009). Imaginação, intuição e visualização: a riqueza de possibilidades de abordagem geométrica no currÃculo de cursos de licenciatura de matemática. 294f. Tese (Doutorado em Educação). Universidade Federal do Paraná. Curitiba, PR.
Loizos, P. (2015). Video, filme e fotografia como documentos de pesquisa, In: Bauer, M. W. & GASKELL, G. (Org). Pesquisa Qualitativa com texto, imagem e som: um manual prático. (13. ed., pp. 137-155). Petrópolis, RJ: Vozes.
Moreira, M. A. (2011). Metodologias de Pesquisa em Ensino. São Paulo, SP: Editora Livraria da FÃsica.
Pickover, C. (2009). The Math Book: 250 milestones in the History of Mathematics. New York, Barnes & Noble.
Severino, A. J. (2016). Metodologia do trabalho cientÃfico. (24. ed., revista e atualizada). São Paulo, SP: Cortez.
Zimmermann, W. & Cunningham, S. (1991). Visualization in teaching and learning mathematics: a project sponsored by the Committee on Computers in Mathematics Education of The Mathematical Association of America. Washington: MAA.
Published
How to Cite
Issue
Section
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.