Improving student knowledge about fraction magnitude: an initial study with students in Early Elementary Education

Authors

Keywords:

Early Elementary Education, Non-Symbolic and Symbolic Fractions, Measurement, 4A- Instructional Model

Abstract

The idea of magnitude is central to understanding fractional numbers. To investigate this relationship, we implemented a design research project in a school in the USA, to examine the potential of a measuring perspective and the mathematical notion of fraction-of-quantity to enhance second-grade students’ conceptual understanding of fraction magnitude. We used ideas from the history of mathematics and mathematics education within a cultural-historical framework to define what fractions are and to construct tasks. The research team consisted of a university professor, two doctoral students, one of whom was an administrator of the municipal board of education, eight elementary school teachers, and a mother. The research sessions involved 35 students, divided into two classes, meeting one hour per session, twice a week, for a total of 12 weeks. The students used Cuisenaire rods to develop the idea that a fraction is a multiplicative comparison between two measurable quantities. The results that we present indicate that the students appropriated the idea of the magnitude of fractions-of-quantity and that, based on mentally evoked images of the rods, were able to construct expressions involving fractional comparisons.

Downloads

Download data is not yet available.

References

Aleksandrov, A. D. (1963). A general view of mathematics (S. H. Gould & T. Bartha, Trans.). In A. D. Aleksandrov, A. N. Kolmogorov, & M. A. Lavrent’ev (Eds.), Mathematics: Its content, methods, and meaning (Vol. 1, pp. 1-64). Cambridge, MA: Massachusetts Institute of Technology.

Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113(3), 447-455.

Barbosa, J. C., & Oliveira, A. M. P. d. (2015). Por que a pesquisa de desenvolvimento na Educação Matemática? Perspectivas da Educação MatemaÌtica, 8, 526-546.

Behr, M. J., Harel, G., Post, T., & Lesh, R. (1992). Rational number, ratio and proportion. In D. A. Grows (Ed.), Handbook on research on mathematics teaching and learning (pp. 296-333). New York: Macmillan.

Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R. (1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 5(5), 321-341.

Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37(4), 247-253.

Boyer, T. W., & Levine, S. C. (2012). Child proportional scaling: Is 1/3 = 2/6 = 3/9 = 4/12? Journal of Experimental Child Psychology, 111(3), 516-533.

Broetto, G. C., & Santos-Wagner, V. M. P. d. (2017). Números irracionais para professores (e futuros professores) de matemática: Uma abordagem direcionada à sala de aula. Vitória, ES: Edifes.

Caraça, B. d. J. (1951). Conceitos fundamentais da Matemática. Lisboa: Tipografia Matemática.

Carraher, D. W. (1993). Lines of Thought: A Ratio and Operator Model of Rational Number. Educational Studies in Mathematics, 25(4), 281-305.

Carraher, D. W. (1996). Learning about fractions. In L. P. Steffe, P. Nesher, G. A. Goldin, P. Cobb, & B. Greer (Eds.), Theories of mathematical learning (pp. 241-266). Mahwah, NJ: Lawrence Erlbaum Associates.

Clawson, C. C. (1994/2003). The mathematical traveler: Exploring the grand history of numbers. Cambrige, MA: Perseus.

De Morgan, A. (1836/2010). The connection of number and magnitude: An attempt to explain the Fifth Book of Euclid. Whitefish, Montana: Kessinger.

Dehaene, S. (2011). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.

Dilke, O. A. W. (1987). Mathematics and measurement. London: British Museum.

Duffy, S., Huttenlocher, J., & Levine, S. (2005). It is all relative: How young children encode extent. Journal of Cognition and Development, 6(1), 51-63.

Euler, L. (1765/1822). Elements of algebra (The Rev. John Hewlett, Trans. 3rd ed.). London: Longman, Hurst, Rees, Orme and Co.

Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53-72.

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314.

Jeong, Y., Levine, S. C., & Huttenlocher, J. (2007). The development of proportional reasoning: Effect of continuous versus discrete quantities. Journal of Cognition and Development, 8(2), 237-256.

Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116(1), 45-58.

Jourdain, P. E. B. (1956). The nature of mathematics. In J. R. Newman (Ed.), The world of mathematics (Vol. 1, pp. 4-72). New York: Simon and Schuster.

Kieren, T. E. (1976). On the mathematical, cognitive and instructional foundations of rational number. In R. A. Lesh (Ed.), Number and measurement (pp. 101-144). Columbus, Ohio: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.

Kieren, T. E. (1988). Personal knowledge of rational numbers: Its intuitive and formal development. In J. Heibert & M. J. Behr (Eds.), Number concepts and operations in the middle grades (pp. 49-84). Reston, VA: Lawrence Erlbaum.

Lamon, S. J. (1999/2005). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teachers (2nd ed.). New York: Lawrence Erlbaum Associates.

Lamon, S. J. (2001). Presenting and representing: From fractions to rational numbers. In A. Cuoco & F. Curcio (Eds.), The Roles of Representations in School Mathematics - 2001 Yearbook (pp. 146-168). Reston: National Council of Teachers of Mathematics.

Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In J. F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A Project of the National Council of Teachers of Mathematics (pp. 629-667). Charlotte, NC: Information Age.

Lewis, M. R., Matthews, P. G., & Hubbard, E. M. (2015). Neurocognitive architectures and the nonsymbolic foundations of fractions understanding. In D. B. Berch, D. C. Geary, & K. M. Koepke (Eds.), Development of mathematical cognition: Neural substrates and genetic influences (pp. 141–160). San Diego, CA: Academic Press.

Lewis, M. R., Matthews, P. M., & Hubbard, E. M. (2015). Neurocognitive architectures and the nonsymbolic foundations of fractions understanding. In D. B. Berch, D. C. Geary, & K. M. Koepke (Eds.), Development of mathematical cognition: Neural substrates and genetic influences (pp. 141–160). San Diego, CA: Academic Press.

Mack, N. K. (1995). Confounding whole-number and fraction concepts when building on informal knowledge. Journal for Research in Mathematics Education, 26(5), 422-441.

Matthews, P. G., & Ellis, A. B. (2018). Natural alternatives to natural number: The case of ratio. Journal of Numerical Cognition, 4(1), 19-58.

Matthews, P. G., Lewis, M. R., & Hubbard, E. M. (2016). Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science, 27(2), 191-202.

McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18(8), 740-745.

New Jersey Department of Education. (2016). New Jersey student learning standards for mathematics. Trenton, NJ: New Jersey Department of Education.

Newark Public Schools. (2019). District Summary (2017-2018).

Ni, Y., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52.

Obersteiner, A., Dresler, T., Bieck, S. M., & Moeller, K. (2019). Understanding fractions: Integrating results from mathematics education, cognitive psychology, and neuroscience. In A. Norton & M. W. Alibali (Eds.), Constructing number: Merging perspectives from psychology and mathematics Education (pp. 135-162). Cham: Springer.

OECD. (2014). A profile of student performance in mathematics. In PISA 2012 results: What students know and can do—Student performance in mathematics, reading, and science (Vol. 1, Revised edition, February 2014, pp. 31-144). Paris: OECD Publishing.

Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542-551.

Ponte, J. P. d., Carvalho, R., Mata-Pereira, J., & Quaresma, M. (2016). Investigação baseada em design compreender e melhorar a práticas educativas. Quadrante, 25(2), 77-.

Powell, A. B. (2018a). Melhorando a epistemologia de números fracionários: Uma ontologia baseada na história e neurociência. Revista de Matemática, Ensino e Cultura, 13(29), 78-93.

Powell, A. B. (2018b). Reaching back to advance: Towards a 21st-century approach to fraction knowledge with the 4A-Instructional Model. Revista Perspectiva, 36(2), 399-420.

Powell, A. B., & Ali, K. V. (2018). Design research in mathematics education: Investigating a measuring approach to fraction sense. In J. F. Custódio, D. A. da Costa, C. R. Flores, & R. C. Grando (Eds.), Programa de PoÌs-Graduação em Educação CientiÌfica e TecnoloÌgica (PPGECT): Contribuições para pesquisa e ensino (pp. 221-242). São Paulo: Livraria da FiÌsica.

Rabardel, P., & Beguin, P. (2005). Instrument mediated activity: from subject development to anthropocentric design. Theoretical Issues in Ergonomics Science, 6(5), 429-461.

Resnick, I., Jordan, N. C., Hansen, N., Rajan, V., Rodrigues, J., Siegler, R. S., & Fuchs, L. S. (2016). Developmental growth trajectories in understanding of fraction magnitude from fourth through sixth grade. Developmental Psychology, 52(5), 746-757.

Ribeiro, E. S. (2010). Um estudo sobre o siÌmbolo, com base na semioÌtica de Peirce. Estudos SemioÌticos, 6(1), 46–53.

Roque, T. (2012). História da matemática: Uma visão crítica, desfazendo mitos e lendas. Rio de Janeiro: Zahar.

Scheffer, N. F., & Powell, A. B. (2019). Frações nos livros brasileiros do Programa Nacional do Livro Didático (PNLD). Revemop, 1(3), 476-503.

Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19(3), 341-361.

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., . . . Chen, M. (2012). Early Predictors of High School Mathematics Achievement. Psychological Science, 23(7), 691-697.

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273-296.

Sophian, C. (2000). Perceptions of proportionality in young children: Matching spatial ratios. Cognition, 75(2), 145-170.

State of New Jersey Department of Education. (2019). PARCC Spring State Summary Report, Mathematics 03 SY 2017-2018.

Struik, D. J. (1948/1967). A concise history of mathematics (3rd Revised ed.). New York: Dover.

Sztajn, P., Wilson, H., Edgington, C., Myers, M., & Dick, L. (2013). Using design experiments to conduct research on mathematics professional development. ALEXANDRIA Revista de Educação em Ciência e Tecnologia, 6(1), 9-34.

Tian, J., & Siegler, R. S. (2017). Why learning common fractions is uncommonly difficult: unique challenges faced by students with mathematical disabilities. Journal of Learning Disabilities, 50(6), 651.

Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5-13.

Published

2019-05-01

How to Cite

POWELL, A. B. Improving student knowledge about fraction magnitude: an initial study with students in Early Elementary Education. International Journal for Research in Mathematics Education, v. 9, n. 2, p. 50-68, 1 May 2019.