

RESSIGNIFICANDO O ESPAÇO ESCOLAR POR MEIO DA MODELAGEM MATEMÁTICA

Simone Nunes Vieira Garcia. Universidade Federal de Uberlândia Simonegarcia05@gmail.com

Anielle Glória Vaz Coelho Universidade Federal de Uberlândia anielle vaz@hotmail.com

Bruno Tizzo Borba Universidade Federal de Uberlândia brunotborba@gmail.com

Rosana Sueli Da Motta Jafelice Universidade Federal de Uberlândia rmotta@ufu.br

Resumo:

A superlotação das salas de aula na rede pública do Estado de Minas Gerais é notória. Grande quantidade de alunos inviabilizam o aprendizado, torna as aulas entediantes, gera indisciplina e consequentemente causa o adoecimento dos professores. Por esse motivo é que o objetivo do nosso estudo foi o de investigar por meio de análise de resoluções e parecer dos órgãos competentes, o quantitativo de alunos e a área das salas de aula de duas escolas da rede estadual, com o propósito de elaborar um modelo matemático que poderá contribuir de forma eficiente na ressignificação do espaço escolar. Com a obtenção desse modelo matemático foi possível verificar a carência de espaço físico nas salas de aula das escolas da rede pública estadual.

Palavras-chave: Modelo; Superlotação; Espaço Escolar.

1. Introdução

Os saberes que os professores produzem e executam estão relacionados com a sua cultura na qual estão inseridos. Nesse sentido, apresenta-se neste relato de experiência um processo de produção de saberes docentes mobilizados na disciplina "Modelagem Matemática", ministrada no curso de Mestrado Profissional em Ensino de Ciências e Matemática, da Universidade Federal de Uberlândia.

Atualmente vivencia-se a superlotação das salas de aula nas escolas públicas do estado, o que causa grande inquietude por parte dos docentes. Tal fato faz com que o trabalho

pedagógico fique prejudicado, pois o aluno quando é exposto a um ambiente abafado tende a não se concentrar, o que gera indisciplina e consequentemente, o seu aprendizado ocorre de forma ineficiente. Segundo Ribeiro,

> [...] o espaço escolar é visto como uma fonte de experiências e de aprendizagem que, em sua materialidade, está impregnado de signos, símbolos e marcas que comunicam e educam; a sua produção, distribuição, posse e usos têm um importante papel pedagógico. Esse espaco é considerado um elemento significativo do currículo oculto, mas tem sido negligenciado. (2004, p.103)

Desta forma, acredita ser importante discutir o espaço das salas de aula e a quantidade de alunos dispostos nelas, a fim de que haja organização, produtividade, construção de conhecimento, aprendizagem significativa e possibilidade de desenvolvimento sensorial, motor e cognitivo.

Com o intuito de sugerir alterações nas resoluções e leis, que regem a área mínima destinada ao aluno na sala de aula, juntamente com o espaço do professor, a metodologia do presente estudo se fundamentou na análise de resoluções e parecer dos órgãos competentes, estudos baseados no quantitativo de alunos e a área das salas de aula de duas escolas da rede estadual, com o propósito de elaborar um modelo matemático que poderá contribuir de forma significativa na ressignificação do espaço escolar.

As escolas estaduais em Minas Gerais são regidas anualmente por resoluções que organizam o quadro de pessoal, estas mencionam a quantidade de alunos por sala de aula em cada ano de escolaridade. Para o ano letivo de 2015, a resolução SEE nº 2741, de 20 de janeiro de 2015, ressalta em seu Anexo III, critério 1, que a enturmação nas salas de aula deverá conter, no mínimo:

- 25 alunos por turma nos anos iniciais do Ensino Fundamental;
- 35 alunos por turma nos anos finais do Ensino Fundamental;
- 40 alunos por turma no Ensino Médio;
- De 08 a 15 alunos por turma na Educação Especial.

A partir desses dados, é necessário dimensionar espaços mínimos para cada ambiente em especial a sala de aula. Segundo a Secretaria Estadual de Educação - SEE, por meio da Diretoria de Planejamento de Rede Física de Minas Gerais – DPRF, a área das salas de aula

corresponderá no mínimo a 1,50 m² por aluno até o 5° ano, do 6° ano em diante 1,00 m² por aluno. Estabelecem também que a área mínima por sala de aula, deverá ser:

- 32m² na fase introdutória com até 20 alunos por sala;
- 40m² nos anos iniciais do Ensino Fundamental com até 25 alunos por sala;
- 40 m² nos anos finais do Ensino Fundamental com até 35 alunos por sala;
- 42 m² no Ensino Médio, com até 40 alunos por sala.

Analisando os documentos citados, observa-se que há divergência em relação à quantidade de alunos por sala, pois, de acordo com a resolução SEE nº 2741/2015 é preciso, por exemplo, no **mínimo** 35 alunos para abrir uma nova turma. Porém a DPRF, estabelece nos anos finais do Ensino Fundamental, até 35 alunos.

Pensando nesta discordância, objetivou-se, realizar um estudo de caso em duas escolas estaduais da cidade de Uberlândia-MG, verificando se a área mínima da sala de aula estipulada pelo DPRF nos anos finais do Ensino Fundamental é adequada para os 35 alunos, considerando também o espaço destinado aos corredores¹ e a área do professor.

Por outro lado, acredita-se que a realidade das escolas estaduais atuais difere dos padrões pré-estabelecidos, pois existem construções antigas, com irregularidades nas áreas das salas de aula e/ou destinação de espaços inadequados. Neste caso, analisou-se também, qual seria a quantidade ideal de alunos a partir da metragem de cada sala de aula existente.

2. A Modelagem Matemática

Biembengut e Hein (2013), define a modelagem como "um processo que envolve a obtenção de um modelo", de modo que, na matemática, um modelo pode ser entendido enquanto "um conjunto de símbolos e relações matemáticas que procura traduzir, de alguma forma, um fenômeno em questão ou **problema de situação real**" (BIEMBENGUT; HEIN, 2013, p. 12). Em síntese, pode-se esquematizar a Modelagem Matemática, como é apresentado na Figura 1.

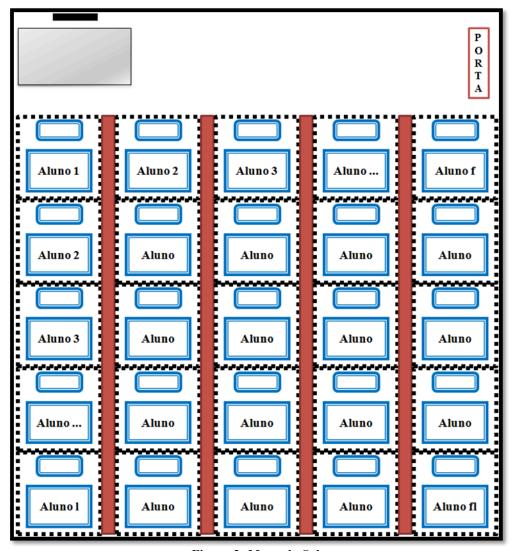
¹ Corredores: espaço entre as filas.

Figura 1 - Esquema de Modelagem Matemática Fonte: BIEMBENGUT; HEIN, 2013, p. 12

A seguir é descrito cada uma das etapas e feito as respectivas associações com os processos que constituíram esse trabalho.

A **interação** consiste no estudo do assunto por meio de revistas, livros, entre outros recursos, ou ainda, como foi o caso, por meio da experiência docente. Essa etapa não necessariamente se finda ao passar para a etapa seguinte. As situações nas quais esse trabalho está imerso de fato fazem valer essa afirmação uma vez que, os estudos sobre o assunto e a experiência escolar continuaram durante a formulação do problema, produção e validação do modelo, pois, como dito anteriormente, vivencia-se a superlotação das salas nas escolas públicas do estado.

Essa etapa se divide em duas outras, sendo eles, o **reconhecimento da situação problema** e a **familiarização** com o assunto a ser modelado. Entende-se que, a situação tinha naturalmente o reconhecimento dos autores, pois faz parte do cotidiano.


A segunda etapa da Modelagem Matemática é a **matematização**. Nessa etapa ocorre a formulação do problema em linguagem que possa ser tratada matematicamente e a resolução desse problema em termos de um modelo matemático. A análise do mesmo ocorreu com auxílio de alguns softwares, tais como Power Point, Excel e Matlab.

Fez-se inicialmente um mapa ilustrativo de uma sala de aula, com intuito de melhor visualização da situação problema a ser analisada. Considerou-se conforme Figura 2:

• $1 \text{ m}^2 = \text{a}$ área ocupada por cada aluno;

- 30 cm² = a distância adotada entre as filas ("corredor");
- 1,5 m = largura da área ocupada pelo professor;
- f = quantidade de filas;
- l = quantidade de alunos por fila;
- f.l = a área ocupada pelos alunos e consequentemente quantidade de alunos;

Figura 2- Mapa da Sala Fonte: Arquivo dos autores

Após a interpretação dos dados, chegou-se ao **modelo matemático**. Esse compreende a interpretação do modelo a fim de verificar o quanto ele se aproxima da situação problema.

Desta maneira pode-se dizer que a área do corredor é dada por:

² Diante da estrutura organizacional das filas nos dias atuais (retangular), delimitou-se 30 cm, pois ao pensarmos no corredor como o espaço de locomoção, irá dobrar, exceto nas filas próximas as paredes laterais.

$$0,3l.(f-1) = 0,3f.l - 0,3l$$

Assim, a área do professor é:

$$1,5. [f + 0,3. (f - 1)] = 1,95f - 0,45$$

Portanto, a área total da sala, pode ser calculada como a soma da área do professor com a área do corredor e a área dos alunos:

$$A_T = 1,95f - 0,45 + 0,3f.l - 0,3l + f.l$$

 $A_T = 1,95f - 0,45 + 1,3f.l - 0,3l$

Considera-se uma sala com 35 alunos, temos:

$$\begin{split} f.\, l &= 35 \, ent \tilde{a}o \, A_T = 1,95 f - 0,45 + 1,3 f.\, l - 0,3 l \\ A_t &= \frac{1,95.35}{l} - 0,45 + 1,3 \, .35 - 0,3 l \\ A_t &= \frac{68,25}{l} + 45,05 - 0,3 l \, \, onde \, l \, \in \mathbb{Z}^* \, /1 \leq l \, \leq 35. \end{split}$$

Investigando os pontos críticos:

$$A'_{t} = 0 \rightarrow$$

$$A'_{t} = \frac{-68,25}{1^2} - 0,3 = 0$$

$$l^2 = \frac{-68,25}{0,3}$$

$$l = \sqrt{\frac{-68,25}{0,3}} \Rightarrow Raiz negativa!$$

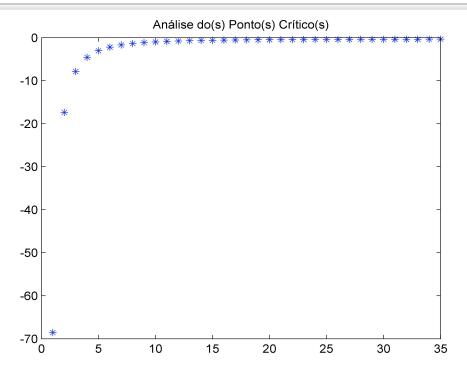


Figura 3 - Candidatos a pontos críticos Fonte: Arquivo dos autores

Como se pode observar na Figura 3, não tem candidatos a pontos críticos reais, além dos extremos do intervalo analisado. E que se trata de uma função decrescente, pois $A'_t < 0$.

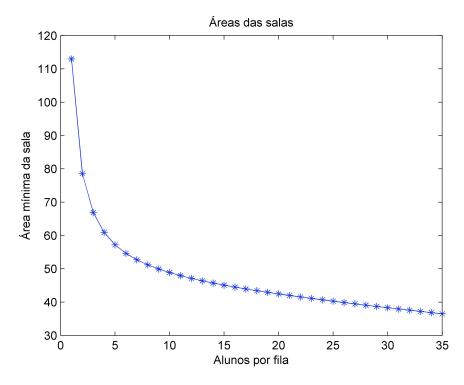


Figura 4 – Áreas das salas Fonte: Arquivo dos autores

Nota-se que o gráfico do modelo proposto se refere ao ramo de uma hipérbole, não possuindo ponto de máximo e mínimo no intervalo analisado. Logo, o ponto máximo e o ponto mínimo de l é 1 e 35, respectivamente, porém neste caso não tem sentido e nem é viável usar uma sala de aula com uma fila com 35 alunos, justificando a não utilização da área mínima.

Para **validação do modelo**, utilizou-se o software Excel (Tabela 1), a fim de verificar qual seria a melhor disposição de filas nas salas de aula, em particular, com 35 alunos.

Tabela 1 - Área da Sala obtida por meio da multiplicação Alunos e Filas

Número de alunos por fila (l)	Número de filas (f)	Área da Sala (AT)
1	35	113
2	17,5	78,575
3	11,66667	66,9
4	8,75	60,9125
5	7	57,2
6	5,833333	54,625
7	5	52,7
8	4,375	51,18125
9	3,888889	49,93333
10	3,5	48,875
11	3,181818	47,95455
12	2,916667	47,1375
13	2,692308	46,4
14	2,5	45,725
15	2,333333	45,1
16	2,1875	44,51563
17	2,058824	43,96471
18	1,944444	43,44167
19	1,842105	42,94211
20	1,75	42,4625
21	1,666667	42
22	1,590909	41,55227
23	1,521739	41,11739
24	1,458333	40,69375
25	1,4	40,28
26	1,346154	39,875
27	1,296296	39,47778
28	1,25	39,0875
29	1,206897	38,70345
30	1,166667	38,325

31	1,129032	37,95161
32	1,09375	37,58281
33	1,060606	37,21818
34	1,029412	36,85735
35	1	36,5

Fonte: Arquivo dos autores

Observando a Tabela 1, pode-se concluir que a melhor situação ocorre quando se tem uma fila com 35 alunos nesta, onde a área mínima seria de 36,5 m² (valor mínimo). Porém, não se considera uma hipótese válida, é irreal, pois esta possibilidade e outras são situações que inviabiliza a estrutura física e organizacional das filas em salas de aula visto que formariam, retângulos com bases e alturas (filas e quantidade de alunos por filas) bem distintos. Sendo assim, adota-se como exequível de 5 a 6 filas (aproximadamente 15% do total de alunos), pois neste caso percebe-se melhor otimização de espaço para que ocorra um melhor desempenho e aprendizado.

Por fim, fez-se também a validação do modelo matemático conforme os documentos citados, SEE e DPRF. Nota-se que para 35 alunos é preciso uma sala de 40 m², entretanto de acordo com a Tabela 1, acredita-se que a área ideal seria de 52,7 m². Desta maneira, percebese uma diferença de 12,7 m² da área real determinada pela DPRF.

3. Verificações e esclarecimentos

Apresentam-se abaixo os dados da primeira escola analisada, intitulada Escola A (tabela 2).

Tabela 2 – Dados da Escola A

Salas/	Alunos	Fila	Por fila	Área	Área	Conside	O que	Situaçã
Escola A	(fl)	(f)		desejada	real	rações	falta?	0
1	31	4,65	6,6667	46,9175	45,44	RUIM	1,4775	Ok
2	32	4,8	6,6667	48,51	45,76	RUIM	2,75	Ok
3	33	4,95	6,6667	50,1025	46,4	RUIM	3,7025	Ok
4	33	4,95	6,6667	50,1025	36,92	RUIM	13,1825	Crítico
5	35	5,25	6,6667	53,2875	45,44	RUIM	7,8475	Crítico
6	34	5,1	6,6667	51,695	45,44	RUIM	6,255	Crítico
7	33	4,95	6,6667	50,1025	45,44	RUIM	4,6625	Crítico
8	30	4,5	6,6667	45,325	45,44	OK		Ok
9	36	5,4	6,6667	54,88	44,28	RUIM	10,6	Crítico

10	27	4,05	6,6667	40,5475	38	RUIM	2,5475	Ok
11	29	4,35	6,6667	43,7325	39,36	RUIM	4,3725	Crítico
12	30	4,5	6,6667	45,325	41,1	RUIM	4,225	Crítico
13	27	4,05	6,6667	40,5475	38,7	RUIM	1,8475	Ok

Fonte: Arquivo dos autores

Observando a Tabela 2, pode-se concluir que apenas uma sala de aula da referida escola possui a área condizente com a área desejada segundo o modelo matemático proposto.

Das 13 salas de aulas da instituição, 7 salas foram consideradas em situação crítica, pelo fato de necessitarem de mais de 4 m² para suprir a necessidade de espaço considerado ideal pelo modelo³.

Apresentam-se na Tabela 3 dados da segunda escola analisada, intitulada Escola B.

Após análise da Tabela 3, pode-se concluir que nesta instituição de ensino, as áreas de todas as salas de aula foram consideradas em estado crítico. Percebe-se também que, a diferença entre a área real e a área desejada de acordo com o modelo é discrepante se levarmos em consideração o parâmetro adotado no presente estudo, que foi de 4 m².

Tabela 3 – Dados da Escola B

Salas/	Alunos	Fila	Por fila	Área	Área	Conside	O que	Situaçã
Escola B	(f.l)	(f)		desejada	real	rações	falta?	0
1	23	3,45	6,66667	34,1775	16	RUIM	18,1775	Crítico
2	40	6	6,66667	61,25	39,06	RUIM	22,19	Crítico
3	40	6	6,66667	61,25	39,06	RUIM	22,19	Crítico
4	38	5,7	6,66667	58,065	39,06	RUIM	19,005	Crítico
5	40	6	6,66667	61,25	39,06	RUIM	22,19	Crítico
6	39	5,85	6,66667	59,6575	40	RUIM	19,6575	Crítico
7	40	6	6,66667	61,25	40	RUIM	21,25	Crítico
8	46	6,9	6,66667	70,805	48	RUIM	22,805	Crítico
9	34	5,1	6,66667	51,695	30	RUIM	21,695	Crítico
10	44	6,6	6,66667	67,62	40	RUIM	27,62	Crítico
11	41	6,15	6,66667	62,8425	40	RUIM	22,8425	Crítico
12	43	6,45	6,66667	66,0275	41,28	RUIM	24,7475	Crítico

³ No quesito "Ok", considerou-se o fato de as salas de aula necessitarem de até 4 m² para suprirem a necessidade de espaço.

13	39	5,85	6,66667	59,6575	40	RUIM	19,6575	Crítico
14	40	6	6,66667	61,25	40	RUIM	21,25	Crítico
15	42	6,3	6,66667	64,435	40	RUIM	24,435	Crítico
16	39	5,85	6,66667	59,6575	40	RUIM	19,6575	Crítico
17	40	6	6,66667	61,25	40	RUIM	21,25	Crítico
18	26	3,9	6,66667	38,955	23	RUIM	15,955	Crítico
19	27	4,05	6,66667	40,5475	20	RUIM	20,5475	Crítico
20	41	6,15	6,66667	62,8425	40	RUIM	22,8425	Crítico
21	40	6	6,66667	61,25	40	RUIM	21,25	Crítico
22	42	6,3	6,66667	64,435	40	RUIM	24,435	Crítico
23	42	6,3	6,66667	64,435	40	RUIM	24,435	Crítico
24	46	6,9	6,66667	70,805	45	RUIM	25,805	Crítico

Fonte: Arquivo dos autores

4. Considerações e encaminhamentos

O estudo-piloto visou sugerir alterações nas resoluções e leis, que regem a área mínima destinada ao aluno na sala de aula, juntamente com o espaço do professor. Para isso, analisamos alguns documentos, fizemos estudos baseados em dados verídicos, buscamos e apresentamos um possível modelo matemático a fim de contribuir de forma significativa nas discussões.

Verificamos a importância de reavaliar e disponibilizar, junto à necessidade dos alunos, cuidados com a locomoção, que possibilite seu desenvolvimento pessoal e social, articulado às atividades da sala de aula propostas pelo professor.

Com base nos estudos descritos, almejamos disponibilizar e compartilhar o modelo a instituições e aos órgãos competentes e que este, possa cooperar para que haja mudanças nas resoluções futuras que determinam a quantidade de alunos por sala de aula de acordo com o ano de escolaridade. Salientamos ainda que cada sala de aula possui especificidades, e que essas condicionam a maneira como a modelagem explicita a carência de espaço físico nas salas de aulas das escolas públicas da rede estadual de Minas Gerais.

Por fim, destacamos o quão a modelagem foi importante em nossa formação e para que pudéssemos obter parâmetros de comparação entre as atuais áreas. Além disso, por meio

dela e de um debate consensual, encontramos possíveis respostas a um problema emergencial que se faz presente nas escolas estaduais analisadas.

5. Referências

BIEMBENGUT, Maria Salett; HEIN, Nelson. **Modelagem Matemática no Ensino.** 5. ed. São Paulo: Contexto, p. 127, 2013.

DPRF.**Diretoria de Planejamento de Rede Física de Minas Gerais.**Disponível em: https://www.mg.gov.br/governomg/ecp/comunidade.do?app=governomg. Acesso em 15 dez. 2015.

RIBEIRO, Solange Lucas. **Espaço Escolar um elemento (in)visível no currículo.** 2004. Disponível em: http://www2.uefs.br/sitientibus/pdf/31/espaco_escolar.pdf>. Acesso em 15 dez. 2015.

SEE.**Resolução Segundo a Secretaria Estadual de Educação**N° 2.141, de 20 de janeiro de 2015. Disponível em: https://www.educacao.mg.gov.br/images/documentos/2741-15-r.pdf. Acesso em 15 dez. 2015.